

eTEACHER

Authors: Florian Frank (ACX)

Gloria Calleja-Rodríguez (CEM)

eTEACHER

EE-07-2016-2017

Innovation Action

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 768738.

D2.5: BACS add-on services container and Universal BACS Communication Interface

WP2: Empower tools I – BACS add-on services

T2.5: BACS integration through universal BACS Communication Interface

Date of document

05. November, 2019 (M25)

Ref. Ares(2019)6862930 - 06/11/2019

D2.5: BACS integration through universal BACS Communication Interface 2 / 28

eTEACHER

GA nº 768738

Disclaimer

The information reflects only the author’s view and the Commission is not responsible for any

use that may be made of the information it contains.

Technical References

1 PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

Project Acronym eTEACHER

Project Title
end-user Tools to Empower and raise Awareness of Behavioural
Change towards EneRgy efficiency

Project Coordinator

Noemi Jimenez Redondo

CEMOSA

noemi.jimenez@cemosa.es

Project Duration 1 October 2017 – 30 September 2020

Deliverable No. D2.5

Dissemination Level PU1

Work Package WP 2 - Empower tools I – BACS add-on services

Task
T2.5: BACS integration through universal BACS Communication
Interface

Lead beneficiary Partner 6 (ACX)

Contributing
beneficiary(ies)

Due date of deliverable 30 September 2019

Actual submission date 30 September 2019

D2.5: BACS integration through universal BACS Communication Interface 3 / 28

eTEACHER

GA nº 768738

Versions

Version Person Partner Date

00 Florian Frank ACX 03 September 2019

01 Florian Frank ACX 20 September 2019

02 Florian Frank ACX 15 October 2019

03 Florian Frank ACX 1 November 2019

04 Florian Frank ACX 5 November 2019

D2.5: BACS integration through universal BACS Communication Interface 4 / 28

eTEACHER

GA nº 768738

Table of Content

0 Abstract .. 7

1 Common eTEACHER database ... 8

1.1 Entity relationship model .. 8

1.1.1 Entities ... 10

1.1.2 Attributes .. 11

1.1.3 Relationships ... 11

1.2 Structured Query Language SQL .. 11

1.3 Relational Database Management System ... 11

1.4 Deviations and Challenges .. 12

2 Universal BACS Communication Interface development 13

2.1 Technical interoperability ... 13

2.2 Syntactical interoperability ... 14

3 Universal BACS Communication Interface add-ons .. 15

3.1 ACX GmbH BACS ViciOne .. 16

3.2 eTEACHER API ... 16

3.2.1 eTEACHER SyncTool .. 17

3.3 eTEACHER OPC UA ... 17

4 BACS add-on services container .. 18

5 Conclusion ... 19

6 References ... 20

D2.5: BACS integration through universal BACS Communication Interface 5 / 28

eTEACHER

GA nº 768738

List of Figures

1 ER-Modell of eTEACHER common database .. 9

2 Attributes of the ‘Meter’ table of eTEACHER’s common database ... 10

3 Data flow of the UBCI Container .. 15

D2.5: BACS integration through universal BACS Communication Interface 6 / 28

eTEACHER

GA nº 768738

Abbreviation and Acronyms

API Application Programming Interface

BACS Building Automation and Control System

BEMS Building Energy Management System

ER-Model Entity-Relationship-Model

ICT Information and Communication Technologies

IEQ Indoor Environment Quality

IP Internet Protocol

JSON JavaScript Object Notation

OPC UA Open Platform Communications Unified Architecture

RDBMS Relational Database Management System

REST Representational State Transfer

SoA Service-oriented architecture

WiA What-if Analysis

WP Work Package

D2.5: BACS integration through universal BACS Communication Interface 7 / 28

eTEACHER

GA nº 768738

0 Abstract

The eTEACHER project aims to empower building occupants to achieve better energy efficiency and

comfort levels and therefore enable behavioural change. To enable the users, an ICT solution is

utilised, the called BACS add-ons. These BACS add-ons are designed to work with existing BACS

through a universal communication interface. This deliverable describes the integration of BACS

add-ons through a universal communication interface and a common database that is used to store

and manage the collected building data.

The focus of the development was the common database. As all the measured data of a BACS is

collected at this central point, it forms the basis of the eTEACHER solution. The BACS add-ons draw

their data from this common database. The database has to be scalable to store the collected

building data. To maintain a wide data pool it is crucial for the database to be interoperable with as

many BACS as possible.

This is reflected in the task of creating a universal BACS Communication interface. In order to

achieve this interoperability, several approaches might be feasible. Each approach is presented with

specific challenges. After exploring each approach, the development of BACS add-ons was

conducted.

D2.5: BACS integration through universal BACS Communication Interface 8 / 28

eTEACHER

GA nº 768738

1 Common eTEACHER database

The focus of the ICT solutions in the eTEACHER project is to enable building users to change their

energy behaviour. Common BACS however, consist of static rulesets, which change actuators based

on sensor data. This approach does not work for eTEACHER as it does not account for the building

users. Techniques like motion sensors switching lights on or off seem to be more user focused,

however these solutions usually just replace common light switches, therefore limiting the users’

freedom to turn lights on or off as they please.

However, there is a common ground of these conventional BACS with the eTEACHER approach -

sensor data. The sensor data will not be used to directly influence actuators, though. Sensor data is

collected to serve as a base for the eTEACHER add-ons.

The following paragraphs aim to explain the steps taken when creating the common database and

provide a basic understanding of databases and the underlying concepts. Explanations are focused

on clarifying the structure and the decisions behind the database concepts for the use in the

eTEACHER project.

1.1 Entity relationship model

The eTEACHER common database is a relational database. A relational database is a collection of

tables that are related with each other. A table is a collection of structured data that is listed in

columns and rows. Each intersection of a column with a row is called a cell. The columns have

properties which defines what kind of data, if any, can be stored within. The ER-model describes the

relations between the entities of the database.

D2.5: BACS integration through universal BACS Communication Interface 9 / 28

eTEACHER

GA nº 768738

1 ER-Modell of eTEACHER common database

D2.5: BACS integration through universal BACS Communication Interface 10 / 28

eTEACHER

GA nº 768738

1.1.1 Entities

The entity relationship model is a methodology used to create relational databases. This is applicable

for the eTEACHER common database as is supposed to collect the data of real-life entities, such as

sensors or buildings. Following this approach, before creating the actual database, all the applicable

entities were identified and collected. Some examples include:

 Building locations

 Rooms inside buildings

 Meters

Collecting the entities was done in close communication with the project technical partners, since

missing any necessary entity would highly impact their add-ons. During this task, the usage of the

Building Information Modelling (BIM) was discussed. As BIM is a software assisted process based

on 3D-modelling of a building it was discarded because this would limit the flexibility of eTEACHER.

Besides, if the target building did not have and existing 3D-model, it would have to be created to

deploy the solution, increasing the installation time and the operation costs for each building. This

would have been the case with all of the eTEACHER’s pilot buildings.

2 Attributes of the ‘Meter’ table of eTEACHER’s common database

D2.5: BACS integration through universal BACS Communication Interface 11 / 28

eTEACHER

GA nº 768738

1.1.2 Attributes

After the entities were listed, their attributes (properties) were specified. This process defines the

appearance of the tables within the database as each attribute is represented as a column. Each

attribute has to be applicable for each row of the table. Using the example of the table “sites” the

attributes are

 Name

 Street (address)

 Postcode (address)

 Town (address)

 Country (address)

Other important aspect when creating attributes of the tables of the common database for

eTEACHER was the requirement of scalability. The aforementioned BIM process that was originally

discarded had an influence on the properties of certain tables. The IFC-Standard, developed by the

buildSMART 2international foundation, specifies identifiers for each element in ifc-files. The ‘”room”

or “meters” table for example, are designed with the attributes/column “ifcGUI” which allows to store

the corresponding identifier of a ifc-file.

1.1.3 Relationships

The relationships are the logical connection between the tables (entities). Additional to the attributes

that represent the properties of the real-life entities (refer to 2.1.2 Attributes) there are keys in each

table. Just as attributes, keys are listed as a column of the table. Each table bears a key that is

unique for each row of the table. This key is called the primary key. In the eTEACHER database the

primary key for each table is stored as an integer in a column “ID”.

Relationships are created by listing the primary key of one table as column in another table. It is then

called foreign key. In eTEACHER for example, the table “buildings” lists the integers 1 to 12 for all

twelve pilot buildings as primary key. Additionally there is the column “Site_ID” which relates the pilot

building to the site it is located at and is therefore a foreign key.

1.2 Structured Query Language SQL

SQL is a standardised programming language designed for managing data stored in the relational

database management systems. Whilst the eTEACHER solution does not require knowledge of SQL

to work, it is mentioned here as it allows to work with the data of eTEACHER. Amongst other things

SQL allows to create, read, update and delete data. Some of the add-ons are based on SQL.

1.3 Relational Database Management System

The term Relational Database Management System describes the software that is used to maintain

relational databases.

When creating the common eTEACHER database, the underlying RDBMS had to be chosen.

Solutions by Microsoft and ORACLE were evaluated. The consortium decided to use the RDBMS

2 https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/

D2.5: BACS integration through universal BACS Communication Interface 12 / 28

eTEACHER

GA nº 768738

solution of ORACLE: MySQL3. As both versions were equally fit to support eTEACHER, the decision

was influenced by the interoperability with the additional sensors used for collecting data in the pilot

buildings.

MySQL is long standing and open source, therefore well established, well documented and proven

and reliable. The use of open source software allows the ICT community to extend the platform’s

functionalities and assure the legacy of its components.

1.4 Deviations and Challenges

Deviating from the plan of a single common database, project partners established national

databases which introduced specific challenges for the work on the common database. The national

databases were introduced at the evaluation phase for the RDBMS and before the ER-model was

finished. They are used to store the data of additional sensor installed in the pilot buildings.

The common database therefore had to be compatible with the national databases, so it could be

synchronised with the national databases. Additionally, since the national databases do not strictly

follow the ER-model of the common database, a synchronisation had to be manually adjusted for

that.

In order to create the compatibility of the database, all the databases use the same RDBMS. For

synchronisation, an extra BACS add-on was developed.

3 https://www.mysql.com/

D2.5: BACS integration through universal BACS Communication Interface 13 / 28

eTEACHER

GA nº 768738

2 Universal BACS Communication Interface development

The range of BACS is very broad and there is not one universal overarching BACS operating system

but there are several ecosystems on the market and a building can often include a multitude of them.

This poses challenges for the eTEACHER project.

If the eTEACHER project was to pursue the integration with a specific ecosystem respectively vendor

it would be depending on this ecosystem being used in the building in which the eTEACHER solution

is to be integrated. Retrofitting such a system into a building is connected with additional financial

investments. Another drawback would be the maintainability. If the chosen ecosystem was to vanish

from the market, the depending solutions could not be maintained anymore.

Therefore, a universal BACS Communication Interface is a core aspect of task 2.5 in eTEACHER.

The goal is to achieve interoperability with ideally all ecosystems available at the market, allowing

the eTEACHER solution to be installed into any building with an already existing BACS at minimal

costs.

To achieve this, the UBCI needs to be able to communicate with existing BACS and transfer data to

the BACS add-ons of the eTEACHER solution, referred to as interoperability. The UBCI focuses on

two levels of interoperability which were defined in an ETSI whitepaper4 : technical interoperability,

which is associated with hardware/software components, systems and platforms and the

communication protocols these components use to communicate and syntactical interoperability

which refers to the data formats that are transferred via the aforementioned protocols. These

concepts of interoperability can be compared to the Open Systems Interconnection Model5, where

higher layers (here syntactical interoperability) are based on lower layers (here technical

interoperability).

2.1 Technical interoperability

In order to create the technical interoperability an underlying protocol had to be chosen. Choosing

an existing BACS protocol would mean to establish a dependency to a single ecosystems. As

mentioned before, this was not a feasible option. Creating a new protocol would mean adding to the

already existing multitude of ecosystems. Additionally, a new protocol had to either be adapted by

the manufacturers of BACS or defined in a way that syntactical interoperability could be achieved

within the project. Considering the amount of existing data formats for BACS, some of them public

standard (e.g. DALI6), some of them available for paying members only (e.g. KNX)7 and even some

proprietary, this approach was could not be realised within the scope of the eTEACHER project.

4 https://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final.pdf

5 https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820

6 https://www.digitalilluminationinterface.org/

7 https://www.knx.org/

D2.5: BACS integration through universal BACS Communication Interface 14 / 28

eTEACHER

GA nº 768738

A compromise was found by choosing an already existing protocol that does not directly prefer one

of the already existing BACS and ideally can be used for communication with the BACS add-ons

without the need for the add-ons to be further adjusted: the internet protocol8.

The internet protocol was first published in 1974 by the Institute of Electrical and Electronics

Engineers (IEEE)9, the 4th version (IPv4), which was described by the IETF10 in 1981 is one of the

core protocols that make up the internet and therefore well established. It is an open standard (RFC

791)11 that is implemented by many recently developed smart home devices/products that make up

the internet of things12. The only drawback for the eTEACHER project that was identified is that

existing BACS installations might not currently support the internet protocol. This can be solved by

installing gateway-devices when eTEACHER is implemented into buildings with existing BACS. In

fact, the eTEACHER project makes use of gateways to log data into the common database.

2.2 Syntactical interoperability

After technical interoperability was achieved, syntactical interoperability had to be implemented.

Many existing BACS standards have specified data formats for usage with IP such as (KNX13 or

Modbus14) which would have to be implemented. The software that implements these data formats

for the eTEACHER project is the BACS “ViciOne” by technical partner ACX GmbH (refer to 3.1).

Not all data formats are publically available, however. Some are proprietary and can only be

accessed by paying license fees to the owner, if they are available at all. To still achieve syntactical

interoperability, other data formats have to be used as substitute. To do so, one could either install

more gateways or create a new data format. Whilst both approaches are feasible, within the

eTEACHER project the development for a new data format was preferred. On the one hand,

installing more gateways would be more expensive and would add more sources of defect, on the

other hand, the BACS add-ons on would need a data format to communicate with the common

database. The new data format was specified as the BACS add-on API (refer to 3.2).

8 https://tools.ietf.org/html/rfc791

9 https://www.ieee.org/

10 https://www.ietf.org/

11 https://www.rfc-editor.org/info/rfc791

12 https://ec.europa.eu/digital-single-market/en/internet-of-things

13 https://www.knx.org/

14 http://www.modbus.org/

D2.5: BACS integration through universal BACS Communication Interface 15 / 28

eTEACHER

GA nº 768738

3 Universal BACS Communication Interface add-ons

The eTEACHER project utilizes different software approaches to achieve universal interoperability.

Each approach is covered by a communication BACS add-on: existing BACS data formats are

covered by ACX GmbH’s ViciOne, the eTEACHER projects, data formats are covered by both, the

eTEACHER API or the OPC UA interface add-on. Existing BACS can push their sensor data to the

common database using these add-ons. The eTEACHER BACS add-ons can use the

communication add-ons to pull data needed from the eTEACHER common database.

3 Data flow of the UBCI Container

D2.5: BACS integration through universal BACS Communication Interface 16 / 28

eTEACHER

GA nº 768738

3.1 ACX GmbH BACS ViciOne

The product ViciOne is the BACS of partner ACX GmbH. It consists of hardware and software

solutions. As illustrated before, ViciOne plays a key role of creating syntactical interoperability with

existing BACS. The data formats for communication with KNX15, EnOcean16 and BACnet17 devices

as well as devices using the MQTT18 protocol via IP-Interfaces are implemented.

BACS hardware that is already installed in the building is abstracted to a software functionblock of

the ViciOne Software Automation Suite. This can be done manually, utilising a library of

functionblocks as well as using a software-wizard that creates functionblocks from existing project

databases, the likes of which are used in the KNX Standard.

This allows the software to read sensor data. Further functionblocks can be used to process the

data, e.g. converting the unit of measured values. Finally a set of functionblocks enhancing the

software to support the eTEACHER common database using SQL (refer to 1.2) logs the read sensor

data into the common eTEACHER database.

3.2 eTEACHER API

The eTEACHER application programming interface (API) is used to query as well as update data of

the common database. An API is a common and modern technique to provide interfaces for

exchanging data in the so called internet of things (IoT). The basic function is similar to how the

World Wide Web works: A user sends a request for information to the API, which then queries the

common database and presents the results of the query to the user. This is also referred to as

Representational State Transfer, or REST19.

The API can be used via web browsers as well as other software, which makes it vendor independent

and universal. It was developed to meet the projects requirements for syntactical interoperability and

is a fully-fledged communication add-on. It was used as a backend for an eTEACHER project specific

website that allowed the pilot coordinators to update the pilot buildings’ data in the common database

as a proof of concept. Another use is the communication with the BACS add-ons of the other

technical partners. Instead of developing an implementation for SQL for each individual BACS add-

on the eTEACHER API centralises this implementation. This would allow for changing the RDBMS

(refer to 1.3) of the common database with minor adjustments: instead of adjusting all the partner’s

BACS add-ons, only the eTEACHER API would have to be adjusted.

15 https://www.knx.org/

16 https://www.enocean-alliance.org/

17 http://www.bacnet.org/

18 http://www.mqtt.org

19 https://searchapparchitecture.techtarget.com/definition/REST-REpresentational-State-Transfer

D2.5: BACS integration through universal BACS Communication Interface 17 / 28

eTEACHER

GA nº 768738

The API is based on ASP.NET Core20 programmed in C# and implements the MySQL21 class

maintained by Oracle Corporation. It is currently utilised by the eTEACHER BACS add-on “Data

Processing for systems performance and indoor environmental quality” to read data from the

common database. The BACS-solution developed for one of the eTEACHER pilots (residential

building block InCity located in Bucharest, Romania) used the eTEACHER API to push the data

measured locally to the common eTEACHER database.

The documentation of the API is an appendix to this deliverable.

3.2.1 eTEACHER SyncTool

The eTEACHER SyncTool is a stand-alone add-on based on the aforementioned API. Deviating

from the project plan, pilot sites are maintaining local databases. It is necessary to update the

eTEACHER common database with the data stored in this local databases.

The SyncTool add-on was developed to solve the synchronisation issues. Using the MySQL

implementation of the eTEACHER API it queries the local databases and updates the common

database with the results through the API.

Even though the add-on is currently specialised on the structure of the databases used at the pilot

sites it is an invaluable add-on for the UBCI: With minimal updates to the query logic it can be used

to query databases used by other BACS and convert the data for the common database.

The SyncTool add-on is used in several instances, querying tables in both the UK and Spain,

updating the common database every 10 minutes.

3.3 eTEACHER OPC UA

Open Platform Communication Unified Architecture is a protocol designed for machine-to-machine

communication in industrial requirement. provides a standardized, open, cross platform and service-

oriented architecture (SOA), which complements the API add-on.

The OPC Server which is part of the UBCI-Container includes an integral information model to

provide meta information over the available data. A client can browse this information model and

read underlying information like actual and historical sensor values. The server provides memory

space in its information model where a client can store any kind of data.

The OPC Server follows the architecture of the common database to provide data points. Each data

set in a specific table of common database represents a data point. The OPC Client, implemented

in the What-if-Analysis BACS add-on subscribes to this data points and makes them available for

the add-on. The implementation of the OPC Server would allow to add more data points using an

OPC Client, thus allowing third parties to achieve syntactical interoperability with the eTEACHER

project.

20 https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core

21 https://www.nuget.org/packages/MySql.Data/

D2.5: BACS integration through universal BACS Communication Interface 18 / 28

eTEACHER

GA nº 768738

4 BACS add-on services container

The BACS add-on services container is the concept of all necessary software programs being

concealed in a single environment. The idea for such a services container is that eTEACHER is easy

to roll out and maintain. Instead of users, administrators or system integrators having to install

several tools and then adjusting them, they ideally should not need to set up anything but the BACS

add-on services container itself, thus saving time and funds.

The need for creating the BACS add-on services container arises due to the ICT nature of the

eTEACHER project. Rather than implementing a single piece of hardware, the BACS add-ons are

software solutions. They could be packaged with a server hardware, however this would add more

costs when installing the eTEACHER solutions in building that already have an ICT environment

attached.

A common concept of dissolving the hardware dependency of software packages would be

virtualisation22. Virtual machines are a software image that abstracts a physical computer. Utilising

a Hypervisor software, a server computer can then run several virtual machines. A virtual machine

image includes a full copy of the operation system as well as all applications installed, necessary

drivers, libraries and binaries. This technique is used in data centres, where a customer can rent a

server machine to use. Instead of having huge quantities of small server computers, a smaller

number of server computers with huge quantities in processing power, Random Access Memory and

storage space are used as hypervisors that run the virtual machines. This effect reduces hardware

costs and scales down even to small businesses.

Even though the technique of virtualisation was feasible for the eTEACHER project was used. During

the course of the project it was discussed, that the eTEACHER solution could be more flexible if not

all BACS add-ons would needed to be used. This allows the solution to be tailored more to the needs

of the users of the solution. This desirable flexibility deviates from the original project plan and would

complicate the use of virtual machines, as a multitude of images with different combinations of the

add-ons would have to be created and maintained.

In 2013 the container software Docker23 was released by Docker, Inc. In contrast to the

aforementioned virtual machines, software containers do not abstract a physical computer, but are

abstracting at the app layer. Code and its dependencies are packaged as a software image. Instead

of a hypervisor, they utilise the container software Docker to run, which is installed on the host

operation system. Since the container image included all the dependencies, it is independent from

the OS, therefore portable and scalable, can be developed and maintained on any operation system.

Even though instead of a single service container (virtual machine) there are now several software

containers, the flexibility and ease of maintenance of this software containers lead to the decision

that within the scope of eTEACHER, the add-ons created in Task 2.5 use the software

containerisation technique of Docker.

22 https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html

23 https://www.docker.com/

D2.5: BACS integration through universal BACS Communication Interface 19 / 28

eTEACHER

GA nº 768738

5 Conclusion

This report describes the results of T2.5 of the eTEACHER project for designing and implementing

the BACS add-on services container and Universal BACS Communication Interface of eTEACHER,

as well as the underlying common database. The process of creating the common database was

described. Even though relational databases are basic principle of electronic data processing,

sculpting a database for the use of different add-ons within the eTEACHER project has been a

challenge. Through the development of the project, the ER-model has proven itself scalable and

flexible to be updated to the changing requirements of the connected add-ons.

Seamlessly integrated with the common databases are the add-ons of the UBCI container, making

the database the core of it. All add-ons are providing a way to create, read and update the data,

whilst offering different interfaces to integrate other BACS or be integrated into BACS themselves.

Using the software container technology when creating the UBCI add-ons makes them versatile and

scalable. This is proven by the eTEACHER project actually utilising all of the add-ons in different

technical contexts.

The UBCI can be used in parts or whole in different projects, both utilising all, a few, or none of the

other add-ons which makes it exploitable beyond the eTEACHER projects. Further development will

be aimed towards an energy reporting tool, utilising the ER-model of the common database

combined with the ACX GmbH BACS add-on and a newly developed user interface.

D2.5: BACS integration through universal BACS Communication Interface 20 / 28

eTEACHER

GA nº 768738

6 References

Docker Inc. (2019) Why Docker? Retrieved from https://www.docker.com/why-docker

Donald Firesmith, Carnegie Mellon University (September 18,2017) Virtualization via Virtual Machines

Retrieved from https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html

Digital Illumination Interface Alliance (2019) Introducing Dali Retrieved from

https://www.digitalilluminationinterface.org/dali/

European Commission (2019) The Internet of Things Retrieved from https://ec.europa.eu/digital-single-

market/en/internet-of-things

European Telecommunications Standards Institute (April 2008) Etsi White Paper No.3 Achieving Technical

Interoperability – the ETSI Approach Retrieved from

https://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final.pdf

Information Sciences Institute University of Southern California (1981) INTERNET PROTOCOL DARPA

INTERNET PROGRAM PROTOCOL SPECIFICATION Retrieved from https://www.rfc-

editor.org/rfc/pdfrfc/rfc791.txt.pdf

International Telecommunication Union (ITU) (1994) ITU-T X.200 (07/1994) Information technology – Open

Systems Interconnection – Basic Reference Model: The basic model Retrieved from https://www.itu.int/ITU-

T/recommendations/rec.aspx?rec=2820

KNX Association cvba (2019) A brief introduction to KNX Retrieved from https://www.knx.org/knx-en/for-

professionals/What-is-KNX/A-brief-introduction/index.php

Modbus Organization, Inc (2019) Modbus TCP Toolkit Retrieved from http://www.modbus.org/toolkit.php

OPC Foundation (2019). Unified Architecture. (n.d.). Retrieved from https://opcfoundation.org/about/opc-

technologies/opc-ua/

Oracle Corporation (2019) Why MySql? Retrieved from https://www.mysql.com/why-mysql/

https://www.docker.com/why-docker
https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-virtual-machines.html
https://www.digitalilluminationinterface.org/dali/
https://ec.europa.eu/digital-single-market/en/internet-of-things
https://ec.europa.eu/digital-single-market/en/internet-of-things
https://www.etsi.org/images/files/ETSIWhitePapers/IOP%20whitepaper%20Edition%203%20final.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc791.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc791.txt.pdf
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=2820
https://www.knx.org/knx-en/for-professionals/What-is-KNX/A-brief-introduction/index.php
https://www.knx.org/knx-en/for-professionals/What-is-KNX/A-brief-introduction/index.php
http://www.modbus.org/toolkit.php
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.mysql.com/why-mysql/

D2.5: BACS integration through universal BACS Communication Interface 21 / 28

eTEACHER

GA nº 768738

Annex A1. eTEACHER REST API documentation

1 Introduction

In this documentation is a brief description about the eTEACHER common database and its REST API. The

REST-API is based on the tables of the common database and follows the syntactical suggestions for the

eTEACHER BACS add-on ‘Data Processing for systems performance and indoor environmental quality’.

2 Database

2.1 ER-Model

D2.5: BACS integration through universal BACS Communication Interface 22 / 28

eTEACHER

GA nº 768738

2.2 Listing

Table Column Description Data type Granlund API
name

sites ID (PK) - INT(11) facilityId

Name - TEXT facilityName

Street max length 50 VARCHAR(50) -

Postcode max length 50 VARCHAR(50) -

Town max length 50 VARCHAR(50) -

Country max length 50 VARCHAR(50) -

buildings ID (PK) - INT(11) BuildingId

Name - TEXT BuildingName

Site_ID (FK) References sites INT(11) -

IfcGUID - TEXT -

floors ID (PK) - INT(11) floorId

Name - TEXT StoreyName

Building_ID (FK) References
buildings

INT(11) -

IfcGUID - TEXT -

rooms ID (PK) - INT(11) roomId

Name - TEXT RoomName

Floor_ID (FK) References floors INT(11) -

Zone_ID (FK) References zones INT(11) -

IfcGUID - TEXT -

meters ID (PK) - INT(11) Device-ID

Name - TEXT DeviceName

Meter_Type (FK) References
meter_types

INT(11) -

Unit - TEXT -

Description - TEXT -

Medium_ID (FK) References
mediums

INT(11) Physical-Quantity

IfcGUID - TEXT -

IfcObjectType - TEXT -

IfcRpresentation - TEXT -

IfcTag - TEXT -

IfcPredefined - TEXT -

Room_ID (FK) References rooms INT(11) -

SubSystem_ID (FK) References
sub_systems

INT(11) -

D2.5: BACS integration through universal BACS Communication Interface 23 / 28

eTEACHER

GA nº 768738

Table Column Description Data type Granlund API
name

measurements ID (PK) - INT(11) -

Value - TEXT -

Timestamp - TIMESTAMP

Meter_ID (FK) References
meters

INT(11) -

zones ID (PK) - INT(11) -

Name - TEXT -

Building_ID (FK) References
buildings

INT(11) -

sub_systems ID (PK) - INT(11) Subsystem-ID

Name - TEXT SubsystemName

MainSystem_ID (FK) References
main_systems

INT(11) -

main_systems ID (PK) - INT(11) MainSystem-ID

Name - TEXT MainSystemName

mediums ID (PK) - INT(11) -

Name - TEXT -

meter_types ID (PK) - INT(11) -

 Name - TEXT -

D2.5: BACS integration through universal BACS Communication Interface 24 / 28

eTEACHER

GA nº 768738

3 REST-API

The API requires a Basic Authentication. The Username and Password are equal to database access and

the API uses this for database requests.

3.1 REST-API Endpoints

The API supports default REST-API Methods GET, POST, PUT and DELETE for every endpoint.

3.1.1 List of Endpoints

Controller Method Address

sites GET /api/v1/sites

GET /api/v1/sites/{id}

POST /api/v1/sites

PUT /api/v1/sites

buildings GET /api/v1/buildings

GET /api/v1/buildings/{id}

POST /api/v1/buildings

PUT /api/v1/buildings

floors GET /api/v1/floors

GET /api/v1/floors/{id}

POST /api/v1/floors

PUT /api/v1/floors

rooms GET /api/v1/rooms

GET /api/v1/rooms/{id}

POST /api/v1/rooms

PUT /api/v1/rooms

meters GET /api/v1/meters

GET /api/v1/meters/{id}

POST /api/v1/meters

PUT /api/v1/meters

measurements GET /api/v1/measurements

GET /api/v1/measurements/{id}

POST /api/v1/measurements

PUT /api/v1/measurements

zones GET /api/v1/zones

GET /api/v1/zones/{id}

POST /api/v1/zones

PUT /api/v1/zones

subsystems GET /api/v1/subsystems

GET /api/v1/subsystems/{id}

POST /api/v1/subsystems

PUT /api/v1/subsystems

mainsystems GET /api/v1/mainsystems

GET /api/v1/mainsystems/{id}

POST /api/v1/mainsystems

PUT /api/v1/mainsystems

mediums GET /api/v1/mediums

GET /api/v1/mediums/{id}

POST /api/v1/mediums

PUT /api/v1/mediums

metertypes GET /api/v1/metertypes

GET /api/v1/metertypes/{id}

POST /api/v1/metertypes

PUT /api/v1/metertypes

D2.5: BACS integration through universal BACS Communication Interface 25 / 28

eTEACHER

GA nº 768738

3.1.2 Example Objects

Example JSON response for GET:

[

{

"id": 1,

"name": "name",

"street": "street",

"postCode": "postcode",

"town": "town",

"country": "country"

}

]

Example JSON response for GET by ID:

{

"id": "id",

"name": "name",

"street": "street",

"postCode": "postcode",

"town": "town",

"country": "country"

}

D2.5: BACS integration through universal BACS Communication Interface 26 / 28

eTEACHER

GA nº 768738

Example JSON for POST:

{

"name": "name",

"street": "street",

"postCode": "postcode",

"town": "town",

"country": "country"

}

Example JSON for PUT:

{

"id": "id",

"name": "name",

"street": "street",

"postCode": "postcode",

"town": "town",

"country": "country"

}

3.2 Special Endpoints

3.2.1 Rooms (≈ GetBuildingsRooms)

Method: GET

Address: /api/v1/rooms/filter

Parameters

Name Optional Description Data Type

buildingId Yes Buildings identifier INT 32

floorid Yes Floor identifier INT 32

medium Yes Medium INT 32

D2.5: BACS integration through universal BACS Communication Interface 27 / 28

eTEACHER

GA nº 768738

3.2.2 Meters (≈ GetFacilitiesMeasurePoints)

Method: GET

Address: /api/v1/meters/filter

Parameters

Name Optional Description Data Type

siteId Yes Site identifier INT 32

meterId Yes Meter identifier INT 32

getLatestData Yes Return additionally to
meter object the latest
Value

BOOL

3.2.2 Measurements (≈ GetBuildingsRoomsConditions, GetBuildingsConditions)

Method: GET

Address: /api/v1/measurements/filter

Parameters

Name Optional Description Data Type

buildingId Yes Buildings identifier INT 32

meterId Yes Floor identifier INT 32

from Yes Returns only greater values or this value DATETIME

to Yes Return only smaller values or this value DATETIME

period Yes
(default
value)

Defines how values are summarized and
default value is d.

min (minutes),

quarter-hour,

h (hours),

d (days),

week,

a (years)

STRING

mediumId Yes Mediums identifier INT 32

roomIds Yes Rooms identifiers Array of INT 32

D2.5: BACS integration through universal BACS Communication Interface 28 / 28

eTEACHER

GA nº 768738

3.2.3 Post list of measurements

Method: POST

Address: /api/v1/measurements/list

This endpoint can be used to add a list of measurements.

